
EXECUTIVE SUMMARY

One of the major challenges organizations face in their 
transformation journey and adoption of cloud technologies is 
migrating and moving away from legacy systems built on 
mainframes or IBM Informix databases. In addition to 
managing large volumes of data and complex data structures, 
these migrations involve 1000s of DataStage-based ETL jobs 
that handle critical functions such as data integration, 
processing, and management. These migration processes 
are particularly challenging because these ETLs implement 
complex workflows with intricate dependencies, custom 
transformations, and orchestration to handle critical functions 
such as data integration, processing, and management.

Ventera, with extensive experience in transitioning data 
infrastructures from mainframes to on-prem and cloud 
infrastructure for federal and state agencies, offers a disruptive 
but proven approach to automating the creation of AWS-native 
pipelines from various legacy ETLs, including DataStage. 

This paper outlines Ventera’s repeatable approach for rapidly 
and accurately converting DataStage workflows into AWS 
cloud-native equivalents. By automating key steps, Ventera 
reduces migration time, safeguards data integrity, lowers 
infrastructure costs, and enables organizations to fully leverage 
AWS’s advanced tools for enhanced data transformation and 
deeper insights. 

Ventera’s innovation helps organizations confidently navigate 
this complex migration and achieve a seamless transition to a 
modern, cloud-native infrastructure.

Challenges in Migrating from IBM 
DataStage

Migrating from IBM DataStage to AWS is not without its 
challenges. Some of the most critical technical hurdles 
include:

• Complex Workflows. Many DataStage workflows have 
complex dependencies and custom logic that need to be 
recreated for the AWS environment.

• Data Transformation Logic. Transforming DataStage's 
proprietary transformation logic into PySpark or other 
AWS-native code is complicated and error-prone.

• Minimizing Downtime. Migration of production workloads 
must minimize downtime, especially for pipelines processing 
real-time or near-real-time data.

• Orchestration. DataStage provides built-in workflow 
orchestration, whereas, on AWS, orchestration requires 
custom integration with Step Functions, Glue Workflows, or 
Lambda triggers.

MIGRATION APPROACH

STEP 1: ASSESS & PLAN

1.1 Inventory DataStage Jobs. Ventera’s first step is 
performing an inventory of your existing DataStage 
environment. This includes creating artifacts describing jobs, 
dependencies, and configurations – transformation logic, job 
schedules, input and output formats, database connections, 
and so on.

1.2 AWS Service Mapping. After the inventory is complete, 
the following step is mapping each of the DataStage jobs and 
the various sub-components of each job to fit with the 
available AWS service. For example:

• DataStage jobs for data transformation can typically be 
mapped to AWS Glue.

• Complex workflows or parallel jobs may map to AWS Step 
Functions.

• You want to set up extraction work for those data jobs, you 
can spin up AWS Glue Crawlers – and save the data 
retrieved to databases on Amazon RDS or Amazon Redshift 
for querying.
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STEP 2: AUTOMATE JOB CONVERSION

2.1 Extract DataStage Metadata. DataStage jobs are typically 
stored in XML format, and job definitions (stages, connectors, 
transformations can be extracted programmatically. We use a 
mix of Python and XML parsing libraries to retrieve job 
metadata, which tells us the overall structure of the job (e.g., 
which SQL is used in which stage, in which order) – and thus, 
where we should begin the conversion.

2.2 Lexer-Based Code Generation for Transformers to AWS 
Glue PySpark. A common challenge is converting the 
transformation logic. DataStage "Transformers" contains 
custom data manipulation logic, which needs to be converted 
into AWS Glue PySpark scripts. Glue uses Apache Spark under 
the hood, which is well-suited to handle the kinds of complex 
transformations typically seen in DataStage. 

Ventera automates this translation using a Lexer-based code 
generation that parses DataStage transformation logic and 
generates the equivalent PySpark code in AWS Glue based on a 
JSON based template. The Lexer works in multiple stages:

• Lexical Analysis. DataStage XML is tokenized into its basic
components, such as filters, joins, transformations, data 
sources, and destinations.

• Syntax Parsing. Tokens are analyzed and mapped to
corresponding PySpark equivalents.

• Code Generation. Lexer then dynamically generates the
appropriate PySpark code for AWS Glue.

Advanced transformations that involve filters, joins, and 
aggregations can now be automatically translated into AWS 
Glue code. This greatly reduces the number of manual errors 
that may occur during these translations, which were handled 
manually in the past, and considerably reduces the time it 
takes for the conversion to be completed. For example, if a 
DataStage Transformer performs a filter followed by a join, a 
corresponding PySpark job could look like this:

from datalex import Lexer  # Importing the Lexer module
# Input DataStage XML or logic for water quality and climate data 
transformations
datastage_job_xml = """
<DataStageJob>
<TransformStage>
<FilterCondition>temperature > 30 and water_quality == 
'good'</FilterCondition>
<JoinCondition>station_id</JoinCondition>
</TransformStage>
</DataStageJob>
"""
# Initialize the Lexer and pass the DataStage job
lexer = Lexer(datastage_job_xml)
# Parse and generate PySpark code
pyspark_code = lexer.generate_pyspark()
# The generated PySpark code (output by the Lexer) would look like:

print(pyspark_code)
# Output (Equivalent PySpark Code)
"""
df1 = 
glueContext.create_dynamic_frame.from_catalog(database='climate_d
b', table_name='temperature_data')
df2 = 
glueContext.create_dynamic_frame.from_catalog(database='water_db'
, table_name='water_quality_data')
# Transformation: filter and join based on temperature and water 
quality
filtered_df1 = df1.filter(f.col('temperature') > 30)
filtered_df2 = df2.filter(f.col('water_quality') == 'good')
joined_df = filtered_df1.join(filtered_df2, 'station_id', 'inner')
# Write result to S3
glueContext.write_dynamic_frame.from_options(frame=joined_df, 
connection_type='s3',
connection_options={'path': 's3://climate-water-analysis/output'}, 
format='parquet')
"""

In this example:

• Lexer Initialization. The Lexer class is initialized with the 
DataStage XML job definition.

• Parsing & Code Generation. The generate_pyspark() 
method automatically parses the XML logic, such as filters 
and joins, and dynamically generates the PySpark code 
required for AWS Glue.

• The Lexer outputs a fully functional PySpark job that 
replicates the same filtering and joining logic from 
DataStage without manual intervention.

This automation through Lexer eliminates manual coding, 
ensuring accurate and fast migration from DataStage to AWS 
Glue while maintaining data transformation integrity.

2.3 Convert DataStage Sequencers to AWS Step Functions. 
DataStage sequencers control the execution of ETL jobs, 
including conditional logic, looping, and parallelism. AWS 
Step Functions can be used to replicate these sequencing 
tasks. Ventera’s approach involves automating the conversion 
of DataStage sequencers to AWS Step Functions using AWS 
SDK (Boto3), providing a streamlined and scalable approach.

• Extract Metadata. Export DataStage Sequencer metadata
in XML format (.dsx or .isx). This contains the sequence 
logic, job dependencies, error handling, and parallel 
execution details.
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import xml.etree.ElementTree as ET
def extract_metadata(file_path):

"""Extract metadata from DataStage export file."""
tree = ET.parse(file_path)
root = tree.getroot()
jobs = []
for job in root.findall(".//Job"):

jobs.append({
'name': job.find('Name').text,
'type': job.find('Type').text,
'next_job': job.find('NextJob').text

})
return jobs

# Example extraction from a water and climate data sequence file
jobs = extract_metadata('datastage_climate_water_sequence.dsx’)

• Parse & Analyze Metadata. Use a custom Python script to 
parse the exported XML and extract job details, transitions, 
and conditions. This includes identifying individual jobs, 
types, and their respective sequence flows.

def parse_metadata(jobs):
"""Parse and analyze metadata for job sequencing."""
parsed_jobs = []
for job in jobs:

parsed_jobs.append({
'name': job['name'],
'type': job['type'],
'next_job': job['next_job']

})
return parsed_jobs

# Parsed metadata from climate and water jobs
parsed_jobs = parse_metadata(jobs)

• Map DataStage Jobs to AWS Services. Define a mapping 
strategy to associate DataStage jobs with appropriate AWS
services such as Lambda, Glue, or Batch. For example, ETL 
jobs may translate to AWS Glue, while simple scripts can be 
handled by Lambda.

def map_jobs_to_aws(parsed_jobs):
"""Map DataStage jobs to AWS services for Step Functions."""
state_machine = {

"StartAt": parsed_jobs[0]['name'],
"States": {}

}
for job in parsed_jobs:

state_machine['States'][job['name']] = {
"Type": "Task",
"Resource": f"arn:aws:lambda:us-east-

1:123456789012:function:{job['name']}",
"Next": job['next_job'] if job['next_job'] else "End"

}
return state_machine

# Map jobs from DataStage to AWS for climate and water data 
processing
state_machine = map_jobs_to_aws(parsed_jobs)

• Generate Step Functions JSON. Dynamically generate a
state machine definition in JSON format, replicating the 
sequencer logic using Step Functions states like Task,
Choice, Parallel, and Catch.

def generat e_step_function_json(state_machine):
"""Generate JSO N for AWS Step Functions."""
state_machine_json = json.dumps(stat e_machine, ind ent =4)

return state_machin e_json
# Generate AWS Step  Functions JSO N for wat er and climat e data processing 
workflow
step_function_json = generate_step_fun ction _json (state_machine)
print(step_function_json)

Output:

{
"StartAt":  "Ingest WaterData",
"States": {

"IngestWaterDat a":  {
"Typ e": "Task",
"Resource": "arn:aws:lambda:us-east-

1:123456789012:function:Ingest WaterData",
"Next": "ProcessClimateData"

},
"ProcessClimateData": {

"Typ e": "Task",
"Resource": "arn:aws:lambda:us-east-

1:123456789012:function:ProcessClimateData",

"Next": "End "
}

}
}

• Deploy Step Functions Programmatically. Utilize Boto3 
to create and deploy the generated Step Function state
machine in AWS, including role-based permissions and 
task resource definitions.

import  b oto3
stepfunctions_client = boto3.client('stepfunctions')
def d eploy_step _funct ion(state_machine_json):

"""Dep loy Step Function st ate machine in AWS."""

response = stepfun ction s_client.create_stat e_machine(
name='W aterClimateDataWorkflow',
definit ion=stat e_mac hine_json,
roleArn ='arn :aws:iam::123456789012:role/Step Func tionsRole'

)

return response
# Deploy the Step Function for  c limate and water  d ata processing
deploy_step_function(st ep_function_json)

2.3 Convert DataStage Data Connectors to AWS Glue 
Crawlers or Amazon RDS. DataStage has connectors that 
work with databases and file systems. In AWS, Glue Crawlers 
can be used to make schema discovery, while RDS or Redshift 
can be used for database integration and management. 
Ventera uses automation to convert DataStage data 
connectors to AWS Glue Crawlers, RDS, or Redshift by parsing 
the DataStage metadata and automatically generating the 
equivalent AWS infrastructure and connection configurations.

• Extract DataStage Connector Information. Use XML 
parsing to retrieve metadata from DataStage connectors 
(e.g., database type, connection details, tables, file 
systems).
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• Auto-Generate Glue Crawlers. Based on the extracted 
metadata, a Python script can dynamically create Glue
Crawlers to discover and catalog the schema from 
databases or file systems, automating the connection
setup.

import boto3
# Initialize the Glue client
glue_client = boto3.client('glue')
# Auto-generate Glue Crawler based on DataStage 
connector info for climate data
response = glue_client.create_crawler(

Name='ClimateDataCrawler',

Role='arn:aws:iam::123456789012:role/GlueCrawlerRole',
DatabaseName='climate_db',
Targets={

'S3Targets': [
{

'Path': 's3://climate-data/temperature/',
}

]
},
TablePrefix='climate_'

)
print(f"Glue Crawler created: {response}")

• Automate RDS/Redshift Connection Setup. If the 
DataStage connector points to a relational database (e.g.,
Oracle, SQL Server), you can map the connection details to
Amazon RDS or Redshift using Boto3 to automate 
database creation and connection management.

Our approach significantly reduces manual effort, ensuring 
accurate and consistent replication of data pipelines while 
also offering scalability and flexibility with AWS services.

STEP 3: TESTING & VALIDATION

3.1 Unit & Integration Testing. Testing is critical to ensure 
that migrated pipelines behave identically to their DataStage 
equivalents. Automated unit tests should be created for each 
AWS Glue job and Step Function workflow to verify the 
correctness of the data transformations and job execution 
flow. Integration testing can ensure that the entire pipeline—
extraction, transformation, and loading—works seamlessly in 
AWS.

3.2 Data Validation. After ETL migration is complete, you can 
schedule batch jobs to auto-validate/compare your DataStage 
jobs in your source/legacy environment with your new 
pipelines in AWS. You can automatically profile your data 
using AWS Glue’s feature in DataBrew, which is also an 
awesome option for consistency checking, etc.

STEP 4: DEPLOYMENT & MONITORING

4.1 Production Deployment. After rigorous testing, the AWS-
native pipelines can be deployed to production. AWS Glue 
Workflows or Lambda triggers can be used to automate job 
scheduling and orchestration. The deployment process 
should be automated using AWS CloudFormation or Terraform 
to manage infrastructure as code.

4.2 Monitoring & Optimization. AWS CloudWatch can 
monitor job execution, and AWS CloudWatch Alarms can 
trigger notifications (e.g., Amazon SNS topic or Amazon Simple 
Email Service) in the case of job failure. AWS Glue job metrics 
can be ingested for visibility into how the pipeline is running.

KEY CONSIDERATIONS FOR COMPLEX 
MIGRATIONS

Moving from IBM DataStage to AWS comes with many 
challenges when dealing with large and complex datasets, 
such as those used for water quality monitoring, climate data 
analysis, or other mission-critical processes. Such a complex 
migration relies heavily on a deep understanding of both the 
source environment and AWS-native services. The following 
are critical success factors for such a migration to minimize 
business-disruption, maintain data integrity and performance 
while migrating to AWS.

• Data Integrity. Ensure data accuracy during migration
using AWS Glue DataBrew for automated validation,
profiling, and consistency checks across datasets like
climate or water quality measurements.

• Large-Scale Data Transfers. When handling large 
datasets (e.g., water and climate records), use AWS
Snowball or DataSync for secure, efficient migration,
reducing the risk of data loss or corruption during transfer.

• Minimizing Downtime. Use AWS DMS to replicate data
continuously, minimizing downtime and ensuring legacy
systems remain operational until AWS-native pipelines are 
fully functional.

• Security & Compliance. Protect sensitive environmental 
data with AWS IAM for fine-grained access control and KMS
for encryption of data in transit and at rest. Use AWS
CloudTrail for logging API activity to meet regulatory
compliance.

• Performance Optimization. Use AWS CloudWatch to
monitor Glue job execution and performance. Optimize 
Spark configurations in Glue for large-scale
transformations like climate data analytics or water quality
assessments.
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• Complex Workflow Orchestration. Replicate the complex 
sequencing of DataStage jobs with AWS Step Functions.
Use parallel states, choice states, and custom error 
handling to maintain the integrity of workflows.

• Custom Data Transformation Logic. Automate the
conversion of custom transformation logic from DataStage 
to AWS Glue PySpark using Lexer-based code generation.
Validate with automated testing to ensure accuracy and
functionality.

• Real-Time Data Processing. For real-time data ingestion
and processing (e.g., live water monitoring or climate
sensor data), leverage AWS Kinesis with Lambda for real-
time data streaming and processing.

• Disaster Recovery and Backup. Set up AWS Backup for
automatic, scheduled backups of critical data. Use Cross-
Region Replication to ensure data resiliency and disaster 
recovery readiness for mission-critical data.

CONCLUSION

Migrating IBM DataStage ETL jobs to AWS Native Pipelines 
offers organizations substantial scalability, cost efficiency, and 
innovation benefits. By leveraging automation—through 
automated parsing, script-based conversion, and AWS-native 
orchestration- our approach reimagines this transformation, 
simplifies the migration process, reduces errors, and accelerates 
the transition to a modern cloud-based data processing 
framework. 

Ventera (now proudly part of Cadmus) is your trusted partner, 
bringing the experience, expertise, and the "magic of 
innovation" to ensure a smooth, secure, and future-proof 
migration to the cloud, empowering your organization to thrive 
in today’s rapidly evolving data landscape. 

Contact us today to explore the possibilities.
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